An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations
نویسندگان
چکیده
A numerical method to solve the fractional diffusion equation, which could also be easily extended to many other fractional dynamics equations, is considered. These fractional equations have been proposed in order to describe anomalous transport characterized by non-Markovian kinetics and the breakdown of Fick’s law. In this paper we combine the forward time centered space (FTCS) method, well known for the numerical integration of ordinary diffusion equations, with the GrünwaldLetnikov definition of the fractional derivative operator to obtain an explicit fractional FTCS scheme for solving the fractional diffusion equation. The resulting method is amenable to a stability analysis à la von Neumann. We show that the analytical stability bounds are in excellent agreement with numerical tests. Comparison between exact analytical solutions and numerical predictions are made.
منابع مشابه
On an explicit finite difference method for fractional diffusion equations
A numerical method to solve the fractional diffusion equation, which could also be easily extended to many other fractional dynamics equations, is considered. These fractional equations have been proposed in order to describe anomalous transport characterized by non-Markovian kinetics and the breakdown of Fick’s law. In this paper we combine the forward time centered space (FTCS) method, well k...
متن کاملWeighted average finite difference methods for fractional diffusion equations
A class of finite difference methods for solving fractional diffusion equations is considered. These methods are an extension of the weighted average methods for ordinary (non-fractional) diffusion equations. Their accuracy is of order (Dx) and Dt, except for the fractional version of the Crank–Nicholson method, where the accuracy with respect to the timestep is of order (Dt) if a second-order ...
متن کاملA New Implicit Finite Difference Method for Solving Time Fractional Diffusion Equation
In this paper, a time fractional diffusion equation on a finite domain is con- sidered. The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first order time derivative by a fractional derivative of order 0 < a< 1 (in the Riemann-Liovill or Caputo sence). In equation that we consider the time fractional derivative is in...
متن کاملAn Explicit Numerical Method for the Fractional Cable Equation
An explicit numerical method to solve a fractional cable equation which involves two temporal Riemann-Liouville derivatives is studied. The numerical difference scheme is obtained by approximating the first-order derivative by a forward difference formula, the Riemann-Liouville derivatives by the Grünwald-Letnikov formula, and the spatial derivative by a three-point centered formula. The accura...
متن کاملOn the Stability Analysis of Weighted Average Finite Difference Methods for Fractional Wave Equation
In this article, a numerical study for the fractional wave equations is introduced by using a class of finite difference methods. These methods are extension of the weighted average methods for ordinary (non-fractional) wave equations. The stability analysis of the proposed methods is given by a recently proposed procedure similar to the standard John von Neumann stability analysis. Simple and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 42 شماره
صفحات -
تاریخ انتشار 2005